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Abstract. These are lecture notes for the 2024 Workshop on Galois Coho-

mology and Massey Products, a conference in occasion of Ján Mináč’s 71st

birthday. We present our joint work on Massey products in Galois cohomol-
ogy.

Introduction

These are lecture notes from the 2024 Workshop on Galois Cohomology and
Massey Products, a conference held in Ottawa on the occasion of Ján Mináč’s 71st
birthday. At this event, we gave a series of four one-hour lectures on our joint work
on Massey products in Galois cohomology [MS22, MS23a, MS25, MS23b]. These
notes closely follow the presentation we gave during the conference, which took
place June 13-16, 2024.

In Lecture 1, we introduce Massey products in Galois cohomology via Dwyer’s
theorem, and we state the Massey Vanishing Conjecture (Conjecture 1.6): for
every field F , every n ≥ 3 and every prime p, any non-empty Massey product
〈χ1, . . . , χn〉 ⊂ H2(F,Z/pZ) of elements χi ∈ H1(F,Z/pZ) contains 0. We recall
what is known about this conjecture, and we state our main result (Theorem 1.9):
the Massey Vanishing Conjecture holds for fourfold Massey products modulo 2
(this is the subject of [MS23a]). For the proof, it will be convenient to use the
language of Galois algebras. We thus conclude Lecture 1 with the interpretation
of n-fold Massey products usingn-fold Massey products using Galois algebras, em-
phasizing the case of 2-fold Massey productsand we carefully work out the n = 2
case (Proposition 1.12).

Lecture 2 begins with a sketch of the proof the Massey Vanishing Conjecture
for n = 3 using Galois algebras. We then turn to the proof of Theorem 1.9, more
precisely, we solve the degenerate case, that is, the case where χ1 = χ4 (this was
the main goal of [MS22]), and we complete the proof of the general case modulo
the key Proposition 2.5.

Lecture 3 is devoted to the proof of Proposition 2.5. The proof given here follows
the same general strategy as in [MS23a], but incorporates some simplifications (see
the new Proposition 3.2).

In Lecture 4, we discuss the contents of [MS25], where we formalize and in-
vestigate the following question: can the known cases of the Massey Vanishing
Conjecture be proved using only Hilbert’s Theorem 90? We show that this is in-
deed the case when n = 3 (Theorem 4.4) and also when n = 4 and p = 2 in the
degenerate case (Theorem 4.5). We then turn to [MS23b], where we answer a ques-
tion of Positselski by constructing examples of fields that contain all roots of unity
and have non-formal Galois cohomology (Theorem 4.11) with Massey products and
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torsors under tori playing a key role in the proof. Along the way, we also mention
our theorem from [MS22] on doubly degenerate Massey products (Theorem 4.16),
which generalizes an earlier example due to Harpaz–Wittenberg (Example 4.15).

Notation. Let F be a field, let Fs be a separable closure of F , and denote by
ΓF := Gal(Fs/F ) the absolute Galois group of F . The ΓF -action on F×s is denoted
additively: for all σ, τ ∈ ΓF and x ∈ F×s , we have (σ + τ)(x) = σ(x)τ(x) and
(στ)(x) = σ(τ(x)).

Let p be a prime, and suppose that char(F ) 6= p and that F contains a primitive
p-th root of unity ζ. If E is an étale F -algebra and a1, . . . , an ∈ E×, we define the
étale E-algebra Ea1,...,an by

Ea1,...,an := E[x1, . . . , xn]/(xp1 − a1, . . . , x
p
n − an)

and we set (ai)
1/p := xi. More generally, for all integers d, we set (ai)

d/p := xdi .
Let n ≥ 1. Given a1, . . . , an ∈ F×, we fix generators σ1, . . . , σn of (Z/pZ)n, and

we view the étale F -algebra Fa1,...,an as a Galois (Z/pZ)n-algebra, where σi(a
1/p
i ) =

ζa
1/p
i and σi(a

1/p
j ) = a

1/p
j for i 6= j. In fact, we will only consider this situation for

n ≤ 4. When n = 2, for notational simplicity, we write a, b for a1, a2, and σa, σb for
σ1, σ2. This is a slight abuse of notation, because a = b does not imply σa 6= σb:
indeed, if a = b then Fa,b = Fa × Fb, where σa acts trivially on Fb and σb acts
trivially on Fa. A similar discussion applies to n = 3 and n = 4.

We write Br(F ) for the Brauer group of F . If F contains a primitive p-th root of
unity, for all a, b ∈ F× we denote by (a, b) the corresponding degree-p cyclic algebra
over F , as well as its Brauer class in Br(F ). We denote by Na1,...,an the norm map
from Fa1,...,an to F , as well as the corestriction Br(Fa1,...,an)→ Br(F ).

1. Lecture 1. The Massey Vanishing Conjecture

1.1. Massey products. Massey products are higher cohomological operations on
the cohomology H∗(A) of a differential graded ring A which generalize the cup
product. They were introduced in algebraic topology by Massey [Mas58]: here
A is the differential graded ring of singular cochains of a topological space, with
coefficients in a ring.

Let Γ be a profinite group, and let p be a prime number. In this lecture series,
we are interested in Massey products in the group cohomology of profinite groups:
here A = C∗(Γ,Z/pZ) is the differential graded ring of continuous cochains of a
profinite group with Z/pZ coefficients, so that H∗(A) = H∗(Γ,Z/pZ) is the mod p
cohomology ring of Γ. The Massey product of elements of H1(Γ,Z/pZ) admits a
simple group-theoretic description, due to Dwyer [Dwy75], which we now recall.

Let n ≥ 2 be an integer, and let Un+1 be the subgroup of upper unitriangular ma-
trices in GLn+1(Z/pZ), that is, upper triangular matrices with all diagonal entries
equal to 1. This is a p-Sylow subgroup of GLn+1(Z/pZ). Its center Zn+1 ' Z/pZ
consists of those matrices in Un+1 which are zero on every non-diagonal entry ex-
cept possibly for entry (1, n+1) (the top-right corner). We let Un+1 := Un+1/Zn+1

denote the factor group: we can think of elements of Un+1 as upper unitriangular
matrices with the top-right corner removed.

For all i and j such that 1 ≤ i < j ≤ n + 1, we let ui,j : Un+1 → Z/pZ be the
coordinate function corresponding to entry (i, j). For all (i, j) 6= (1, n+ 1), the ui,j
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also define coordinate functions on Un+1 → Z/pZ. The functions ui,j are group
homomorphisms if j = i+ 1, but not in general.

We have a diagram of surjective group homomorphisms

(1.1) Un+1 Un+1 (Z/pZ)n,

where the right map is given (u12, . . . , un,n+1), that is, by forgetting all entries
except for the first upper diagonal.

Now let Γ be a profinite group, and consider Z/pZ as a discrete Γ-module with
trivial action. We have

H1(Γ,Z/pZ) = Homcont(Γ,Z/pZ).

Let χ1, . . . , χn ∈ H1(Γ,Z/pZ) be continuous homomorphisms, and define

χ := (χ1, . . . , χn) : Γ→ (Z/pZ)n.

Consider the diagram

Γ

Un+1 Un+1 (Z/pZ)n,

χ

where the bottom row is (1.1).
Let ρ : Γ → Un+1 be a (continuous) lift of χ. Such a lift may not exist, or one

may get several liftings. Assuming that ρ exists, We want to understand when it
may be lifted to a continuous homomorphism ρ : Γ → Un+1. Pictorially, we want
to determine whether a dashed arrow ρ in the commutative diagram below exists:

(1.2)

Γ

Un+1 Un+1 (Z/pZ)n.

χ
ρρ

Concretely, ρ may be viewed as a matrix
1 ρ12 . . . ρ1,n �

1 ρ2,n+1

1
...

1 ρn,n+1

1


where ρij := uij ◦ ρ : Γ→ Z/pZ are cochains (that is, functions). The cochains ρij
are homomorphisms when j = i+ 1, but not in general. The commutativity of the
right triangle in (1.2) is equivalent to

ρi,i+1 = χi (1 ≤ i ≤ n− 1).

We now express in matrix notation the condition that ρ lifts to a homomorphism
ρ : Γ → Un+1. Let η : Γ → Z/pZ be a cochain (that is, a function), and consider
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the function ρ : Γ→ Un+1 with matrix representation
1 ρ1,2 . . . ρ1,n η

1 ρ2,n+1

1
...

1 ρn,n+1

1

 .
The function ρ is a group homomorphism if and only if

ρ(xy) = ρ(x)ρ(y) for all x, y ∈ Γ

By considering the (1, n + 1) entry on both sides, this condition is seen to be
equivalent to

(1.3) η(xy) = η(y) +

n∑
i=2

ρ1i(x)ρi,n+1(y) + η(x) for all x, y ∈ Γ.

Let us set

∆(ρ) : Γ2 → Z/pZ, ∆(ρ)(x, y) =

n∑
i=2

ρ1i(x)ρi,n+1(y).

Using the fact that ρ is a homomorphism, one may check that ∆(ρ) is 2-cocycle:

∆(ρ) ∈ Z2(Γ,Z/pZ).

Note that η(x) + η(y) − η(xy) = ∂(η)(x, y), where ∂ denotes the coboundary in
group cohomology. Equation (1.3) may thus be rewritten as

(1.4) ∆(ρ)(x, y) = ∂(−η)(x, y).

Thus ∆(ρ) represents the obstruction to lifting ρ to some ρ:

ρ lifts to ρ ⇐⇒ [∆(ρ)] = 0 in H2(Γ,Z/pZ).

This motivates the following definition.

Definition 1.1. Let Γ be a profinite group, let p be a prime number, let n ≥ 2
be an integer, and let χ1, . . . , χn ∈ H1(Γ,Z/pZ). The mod p Massey product of
χ1, . . . , χn is the subset

〈χ1, . . . , χn〉 := {[∆(ρ)] | ρ : Γ→ Un+1 lifts χ} ⊂ H2(Γ,Z/pZ).

We say that 〈χ1, . . . , χn〉 is defined if it is non-empty, that is, if and only if there
exists a ρ : Γ→ Un+1 lifting χ.

We say that 〈χ1, . . . , χn〉 vanishes if it contains 0, that is, if and only if there
exists a ρ : Γ→ Un+1 lifting χ.

It follows from the definition that, for all n ≥ 2, if a Massey product 〈χ1, . . . , χn〉
vanishes, then it is defined.

Example 1.2. Suppose that n = 2, and let χ1, χ2 ∈ H1(Γ,Z/pZ). Then

ρ =

1 χ1 �
0 1 χ2

0 0 1


and 〈χ1, χ2〉 = {χ1 ∪ χ2}. Therefore 〈χ1, χ2〉 is defined, and it vanishes if and only
if χ1 ∪ χ2 = 0 in H2(Γ,Z/pZ).
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1.2. The Massey Vanishing Conjecture.

Proposition 1.3. Let Γ be a profinite group, let p be a prime number, let n ≥ 3 be
an integer, and let χ1, . . . , χn ∈ H1(Γ,Z/pZ). We have the following implications:

〈χ1, . . . , χn〉 vanishes⇒ 〈χ1, . . . , χn〉 is defined⇒ χi ∪ χi+1 = 0 (1 ≤ i ≤ n).

Proof. We have already discussed the first implication. One may prove the second
implication as follows. As n ≥ 3, for all 1 ≤ i ≤ n− 1 the function

πi : Un+1 → U3, A 7→

1 ui,i+1(A) ui,i+2(A)
0 1 ui+1,i+2(A)
0 0 1


is a group homomorphism. If ρ : Γ→ Un+1 is a lift of (χ1, . . . , χn) : Γ→ (Z/pZ)n,
then πi ◦ ρ : Γ → U3 is a lift of (χi, χi+1) : Γ → (Z/pZ)2. By Example 1.2, this
implies that χi ∪ χi+1 = 0. �

Since U3 = (Z/pZ)2, the second implication of Proposition 1.3 is an equivalence
for n = 3. Apart from this, the implications of Proposition 1.3 cannot be reversed
in general. However, as first observed by Hopkins and Wickelgren [HW15], Massey
products exhibit remarkable behavior when Γ = ΓF is the absolute Galois group of
a field F . For all i ≥ 0, we write Hi(F,Z/pZ) for Hi(ΓF ,Z/pZ).

Theorem 1.4 (Hopkins–Wickelgren). Let F be a number field, and let χ1, χ2, χ3 ∈
H1(F,Z/2Z) be such that the Massey product 〈χ1, χ2, χ3〉 ⊂ H2(F,Z/2Z) is defined.
Then 〈χ1, χ2, χ3〉 vanishes.

This result was later generalized by Mináč and Tân [MT17a] to arbitrary fields.

Theorem 1.5 (Mináč–Tân). Let F be an arbitrary field, and let χ1, χ2, χ3 ∈
H1(F,Z/2Z) be such that the Massey product 〈χ1, χ2, χ3〉 ⊂ H2(F,Z/2Z) is de-
fined. Then 〈χ1, χ2, χ3〉 vanishes.

Mináč and Tân then made the following conjecture.

Conjecture 1.6 (Massey Vanishing Conjecture (Mináč–Tân)). Let F be a field,
let n ≥ 3 be an integer, let p be a prime number, and let χ1, . . . , χn ∈ H1(F,Z/pZ).
If 〈χ1, . . . , χn〉 is defined, then it vanishes.

Remark 1.7 (Motivation for Conjecture 1.6). The main motivation for the Massey
Vanishing Conjecture comes from the Profinite Inverse Galois Problem: Which
profinite groups are absolute Galois groups of fields?

While an answer to this question is unknown, several necessary conditions have
been established. For example, the only finite absolute Galois groups are the trivial
group and the cylic group of order two (Artin–Schreier).

A much deeper necessary condition is the following. Assume that F contains
a primitive p-th root of unity. The Bloch–Kato Conjecture, proved by Voevodsky
and Rost, implies that the cohomology ring H∗(F,Z/pZ) is quadratic: it admits
a presentation with generators in degree 1 (corresponding to elements of F×) and
relations in degree 2 (the Steinberg relations).

Remark 1.8 (Characteristic p). Let p be a prime, and let F be a field such that
H2(F,Z/pZ) = 0. Then, for all n ≥ 2, the map H1(F,Un+1) → H1(F,Un+1) is
surjective, and hence the Massey Vanishing Conjecture holds for F .
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In particular, the Massey Vanishing Conjecture holds for fields of cohomological
p-dimension at most one. For example, it holds for fields of characteristic p, for C1

fields, and for finite fields.

The table below summarizes the known results on Conjecture 1.6 in chronological
order, according to their announcement dates.

F n p Authors Ref.
Number field 3 2 Hopkins–Wickelgren [HW15]

Arbitrary 3 2 Mináč–Tân [MT17a]
Number field 3 Any Mináč–Tân [MT15]

Arbitrary 3 Any Efrat–Matzri, Mináč–Tân [EM17] [MT16]
Number fields 4 2 Guillot–Mináč–Topaz–Wittenberg [GMT18]
Number fields Any Any Harpaz–Wittenberg [HW23]

Arbitrary 4 2 Merkurjev–Scavia [MS23a]

The goal of Lectures 2 and 3 is to explain the proof of the statement appearing
in the bottom row of the table.

Theorem 1.9 (Merkurjev–Scavia). Let F be a field, let χ1, χ2, χ3, χ4 ∈ H1(F,Z/2Z)
be such that the Massey product 〈χ1, χ2, χ3, χ4〉 ⊂ H2(F,Z/2Z) is defined. Then
〈χ1, χ2, χ3, χ4〉 vanishes.

1.3. The case when µp ⊂ F×. Suppose that F contains primitive p-th root of
unity ζ ∈ F×. We identify Z/pZ and µp by means of the isomorphism sending 1 to
ζ. Kummer theory gives the identifications

H1(F,Z/pZ) = F×/F×p, H2(F,Z/pZ) = Br(F )[p].

If a ∈ F×, we let χa : ΓF → Z/pZ be the corresponding continuous homomorphism,
that is, letting a′ ∈ F×s be a p-th root of a, the homomorphism χa is determined
by the equality

(g − 1)(a′) = ζχa(g) for all g ∈ ΓF .

(Recall that we use additive notation for the Galois action on F×s .) Under these
identifications, the cup product χa ∪ χb corresponds to (a, b), the Brauer class of
the degree-p cyclic algebra determined by a and b.

We may thus restate Proposition 1.3 for Γ = ΓF in the following equivalent form,
expressed purely in terms of F .

Proposition 1.10. Let p be a prime, let F be a field containing a primitive p-th
root of unity ζ ∈ F×, let n ≥ 3 be an integer, and let a1, . . . , an ∈ F×. We have
the following implications:

〈a1, . . . , an〉 vanishes⇒ 〈a1, . . . , an〉 is defined⇒ (ai, ai+1) = 0 (1 ≤ i ≤ n).

1.4. Galois algebras. Let G be a finite group equipped with the trivial ΓF -action.
Recall that the pointed cohomology set H1(F,G) consists of equivalence classes of
continuous homomorphisms ΓF → G, where two homomorphisms f1, f2 : ΓF → G
are considered equivalent if there exists g ∈ G such that

f2(σ) = gf1(σ)g−1 for all σ ∈ ΓF .

The pointed set H1(F,G) also parametrizes Galois G-algebras. By definition,
a G-algebra L/F is an étale F -algebra equipped with a G-action by F -algebra
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automorphisms. The G-algebra L is said to be Galois if |G| = dimF L and LG = F ;
see [KMRT98, Definitions (18.15)]. A G-algebra L/F is Galois if and only if the
corresponding morphism of schemes Spec(L)→ Spec(F ) is an étale G-torsor. The
automorphism group of a trivial G-algebra over F (equivalently, of a trivial G-
torsor) may be identified to G, and hence by Galois descent we have a canonical
bijection

(1.5) H1(F,G)
∼−→ {Isomorphism classes of Galois G-algebras over F}

which is functorial in F and G; see [KMRT98, Example (28.15)].
Conjecture 1.6 may be restated as saying that every Galois (Z/pZ)n-algebra

which is induced by a Un+1-algebra is also induced by a Un+1-algebra. More
precisely, let Qn+1 be the kernel of the projection Un+1 → (Z/pZ)n, and let Qn+1 :=
Qn+1/Zn+1.

Conjecture 1.11 (Massey Vanishing Conjecture, Galois algebra formulation). Let
F be a field, let p be a prime, let n ≥ 3, and let K/F be a Galois (Z/pZ)n-algebra.

If there exists a Galois Un+1-algebra E/F such that EQn+1 = K as (Z/pZ)n-
algebras, then there exists a Galois Un+1-algebra L/F such that LQn+1 = K as
(Z/pZ)n-algebras.

Suppose now that G = N o S, where N is a normal subgroup of G and S is
a subgroup of G. Let E be a Galois S-algebra over F , and let π : ΓF → S be a
continuous group homomorphism whose class in H1(F, S) coincides with the class
of E/F . The group S acts on N by conjugation. We view N as a ΓF -module via π,
and we write Nπ for the twist; see [KMRT98, 28.C]. We have a canonical bijection

H1(F,Nπ)
∼−→ {Isom. classes of pairs (K,ϕ), where K/F is a Galois G-algebra

(1.6)

and ϕ : KN → E is an isomorphism of Galois S-algebras},

which is functorial in F . Here, an isomorphism of pairs (K,ϕ)→ (K ′, ϕ′) is defined
as an isomorphism of Galois G-algebras σ : K → K ′ over F such that ϕ = ϕ′ ◦ σ
on KN . We recall how the bijection (1.6) is constructed. Letting K0 be the Galois

G-algebra induced by E, we have a canonical isomorphism ϕ0 : KN
0
∼−→ E of Galois

S-algebras, and the automorphism group of the pair (K0, ϕ0) is naturally identified
with Nπ: by Galois descent, this defines (1.6). Under the identification (1.6), the
surjective twisting map

(1.7) H1(F,Nπ)→ Fiberπ[H1(F,G)→ H1(F, S)]

of [KMRT98, Proposition 28.11] sends the class of a pair (K,ϕ) to the class of K.

1.5. Galois U3-algebras. For the remainder of this lecture, we assume that p = 2.
In particular, the groups U3, Z3 and U3 introduced earlier will now be considered
with respect to the prime p = 2. We give an equivalent interpretation of Exam-
ple 1.2 (for p = 2) in terms of Galois U3-algebras, which will be used in the proof
of Proposition 2.4, and hence in the proof of Theorem 1.9.

Suppose that char(F ) 6= 2, let a, b ∈ F×, and suppose that (a, b) = 0 in Br(F )[2].
We write (Z/2Z)2 = 〈σa, σb〉, and we view Fa,b as a Galois (Z/2Z)2-algebra over F
via the action

(σa − 1)(
√
a) = (σb − 1)(

√
b) = −1, (σa − 1)(

√
b) = (σb − 1)(

√
a) = 1.
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Let α ∈ F×a satisfy Na(α) = bx2 for some x ∈ F×, and consider the étale F -algebra
(Fa,b)α. We have

U3 = 〈σa, σb : σ2
a = σ2

b = [σa, σb]
2 = 1〉,

where the commutator [σa, σb] generates the center Z3 ⊂ U3. It follows that we may
identify U3 = (Z/2Z)2 in such a way that the surjective homomorphism U3 → U3

is given by σa 7→ σa and σb 7→ σb. Observe that σa(α) = bx2/α and σb(α) = α. We
may thus define a Galois U3-algebra structure on (Fa,b)α by letting U3 act on Fa,b
via U3 and by setting

(1.8) σa(
√
α) = x

√
b/
√
α, σb(

√
α) =

√
α.

One verifies that σ2
a = σ2

b = [σa, σb]
2 = 1 on (Fa,b)α, that (Fa,b)α is a Galois

U3-algebra and that its subalgebra of Z3-invariants is Fa,b.
Symmetrically, if β ∈ F×b satisfies Nb(β) = ay2 for some y ∈ F×, the étale

F -algebra (Fa,b)β has the structure of a Galois U3-algebra defined by

(1.9) σa(
√
β) =

√
β, σb(

√
β) = y

√
a/
√
β.

Proposition 1.12. Assume that p = 2, let F be a field of characteristic different
from 2, and let a, b ∈ F× be such that (a, b) = 0 in Br(F )[2].

(a) Every Galois U3-algebra K over F such that KZ3 = Fa,b is of the form
(Fa,b)α for some α ∈ F×a with the property Na(α) = b in F×/F×2 and U3-algebra
structure as in (1.8).

(b) Every Galois U3-algebra K over F such that KZ3 = Fa,b is of the form
(Fa,b)β for some β ∈ F×b with the property Nb(β) = a in F×/F×2 and U3-algebra
structure as in (1.9).

Proof. (a) We have U3 = N o S, where

N =

1 0 ∗
1 ∗

1

 , S =

1 ∗ 0
1 0

1

 .
We let S act on N by conjugation. As an S-module, N has a permutation basis
given by 1 0 0

1 1
1

 ,
1 0 1

1 1
1

 .
We obtain a commutative square of S-modules:

(1.10)

N IndS{1}(Z/2Z)

Z/2Z Z/2Z,

∼

u23 Norm

where Ind denotes the induction functor. Let pr : U3 → S be the projection map,
and let Npr be the twist of N by pr; see [KMRT98, 28.C]. Then (1.10) induces a
commutative square of U3-modules:

(1.11)

Npr IndU3

N (Z/2Z)

Z/2Z Z/2Z.

∼

u23 Norm
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Let ρ : ΓF → U3 be a continuous homomorphism whose class in H1(F,U3) coin-
cides with that of K, and define π : ΓF → S by π := p ◦ ρ. We have KZ3 = Fa,b,
and hence KN = (KZ3)σb = (Fa,b)

σb = Fa. In turn, the equality KN = Fa implies
that the class of π in H1(F, S) = H1(F,Z/2Z) is equal to χa. Pullback of (1.11)
along ρ yields the following commutative square:

(1.12)

Nπ IndFFa(Z/2Z)

Z/2Z Z/2Z.

∼

u23 Na

Here IndFFa(Z/2Z) indicates the ΓF -module corresponding to the pushforward of
the constant étale sheaf Z/2Z on Spec(Fa) to Spec(F ); see [Mil80, Theorem II.1.9].

(Concretely, when Fa is a field we have IndFFa(Z/2Z) = IndΓF
ΓFa

(Z/2Z), and when

Fa = F ×F we have IndFFa(Z/2Z) = Z/2Z⊕Z/2Z with trivial action.) Combining
(1.12) with Faddeev–Shapiro’s lemma [NSW08, Proposition 1.6.4], we deduce that
the composition

Φ: H1(F,Nπ)
Res−−→ H1(Fa, N)

u13−−→ H1(Fa,Z/2Z)

is an isomorphism fitting in the commutative diagram

(1.13)

H1(F,Nπ) H1(Fa,Z/2Z) F×a /F
×2
a

H1(F,Z/2Z) H1(F,Z/2Z) F×/F×2.

Φ

u23 Na Na

Let E be a Galois U3-algebra and ϕ : EN → Fa be an isomorphism of Galois U3-
algebras over F . By base change, we obtain an isomorphism of Galois U3-algebras

ϕFa : (EN )a
∼−→ (Fa)a =

∏
σ∈S

Fa

over Fa. Therefore, we may write Ea =
∏
σ∈S Eϕ,σ, where Eϕ,σ is the subalgebra

of Ea lying over the inverse image of the factor in
∏
σ∈S Fa corresponding to σ.

In terms of the identification (1.6), the Faddeev–Shapiro isomorphism Φ sends the
class of the pair (E,ϕ) to the class of the Galois Z/2Z-algebra Eϕ,0/Fa, where
0 ∈ S is the identity element.

Since KZ3 = Fa,b, the pair (K, id) defines an element in H1(F,Nπ). Let α ∈ F×a
be such that Φ sends the class of (K, id) to (Fa)α/Fa. By (1.13), we have Na(α) =
bx2 for some x ∈ F×. The pair ((Fa,b)α, id), where (Fa,b)α is the Galois U3-algebra
of (1.8), also defines an element of H1(F,Nπ) which is mapped to (Fa)α/Fa by Φ.
The injectivity of Φ now implies that the Galois U3-algebras K and (Fa,b)α are
isomorphic over F , as desired.

(b) Analogous to (a), replacing N and S by

N ′ =

1 ∗ ∗
1 0

1

 and S′ =

1 0 0
1 ∗

1

 ,
respectively. �
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2. Lecture 2. Beginning of Proof of Theorem 1.9

2.1. Proof of Massey vanishing for n = 3. As as warm-up for the proof of
Theorem 1.9, we sketch a new proof of the case n = 3 of the Massey Vanishing
Conjecture. (In the p = 2 case, we will give a complete proof.) See [MS22, Corollary
3.4] for an alternative proof using Galois U4-algebras, and [MS25, Theorem 1.3] for
an alternative proof using only cocycles.

Theorem 2.1 (Efrat–Matrzi, Mináč–Tân). Let F be a field, let p be a prime
number, and let χ1, χ2, χ3 ∈ H1(F,Z/pZ). The following are equivalent:

(1) χ1 ∪ χ2 = χ2 ∪ χ3 = 0 in H2(F,Z/pZ);
(2) 〈χ1, χ2, χ3〉 is defined;
(3) 〈χ1, χ2, χ3〉 vanishes.

Proof. We know that (3) implies (2), and that (1) and (2) are equivalent (see below
Proposition 1.3). It remains to prove that (2) implies (3). By Remark 1.8, we may
assume that char(F ) 6= p. By a simple argument [MT16, Proposition 4.14] which
uses the fact that the degree [F (µp) : F ] is prime to p, we may also assume that F
contains a primitive p-th root of unity ζ.

Let a, b, c ∈ F× be such that χ1 = χa, χ2 = χb and χ3 = χc. Since 〈a, b, c〉 is
defined, we have a homomorphism ρ : ΓF → U4 of the form

1 χa µ �
0 1 χb θ
0 0 1 χc
0 0 0 1


The obstruction to lifting this homomorphism to U4 is given by

A := ∆(ρ) = χa ∪ θ + µ ∪ χc ∈ Br(F )[p].

Consider the following assumption.

Assumption 2.2. The Brauer class A is decomposable: there exist x, y ∈ F× such
that

A = (a, x) + (y, c) = χa ∪ χx + χy ∪ χc ∈ Br(F )[p].

We prove (3) under Assumption 2.2. Consider the continuous homomorphism
ρ′ : ΓF → U4 defined by the matrix

1 χa µ− χy �
0 1 χb θ − χx
0 0 1 χc
0 0 0 1

 .
The obstruction to lifting this homomorphism to U4 is given by

χa ∪ (θ − χx) + (µ− χy) ∪ χc = A−A = 0,

and hence ρ′ lifts to U4. Thus 〈a, b, c〉 vanishes, as desired.
In order to complete the proof, it remains to verify Assumption 2.2. Let

Br(Fa,c/F ) := Ker[Br(F )→ Br(Fa,c)]

and let Dec ⊂ Br(Fa,c/F ) be the subgroup of decomposable elements, that is,
elements of the form (a, x) + (y, c) for some x, y ∈ F×. The cocycle description of
A implies that A ∈ Br(Fa,c/F ), and we want to show that A ∈ Dec. If p = 2, then
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Dec = Br(Fa,c/F )[2], and hence A is decomposable. (This is property P2(2) for F
in the sense of [ELTW83, p. 1129], and it is satisfied by [ELTW83, Remark 3.12].)
When p > 2, it is no longer true that Dec = Br(Fa,c/F )[p] in general. However,
letting Ga,c := Gal(Fa,c/F ), we have a canonical isomorphism

Br(Fa,c/F )[p]/Dec
∼−→ Ĥ−1(Ga,c, F

×
a,c) =

{z ∈ F×a,c : Na,c(z) = 1}
{(σ − 1)u : σ ∈ Ga,c, u ∈ F×a,c}

.

Since (a, b) = (b, c) = 0, there exist α ∈ F×a and γ ∈ F×c such that Na(α) = b
and Nc(γ) = b. One can show by direct calculation that the image of ∆(ρ) is the

class of z = γ/α in Ĥ1. We have NFa,c/Fac(z) = Na(α)/Nc(γ) = b/b = 1. By

Hilbert’s Theorem 90, this implies that z = (σ − 1)(u) for some u ∈ F×a,c, where

σ is a generator of Gal(Fa,c/Fac). Thus the class of z in Ĥ1 is trivial. Therefore,
A = ∆(ρ) is decomposable and Assumption 2.2 holds, as desired. �

2.2. Beginning of proof of Theorem 1.9. We begin the proof of Theorem 1.9.
From now on, in this lecture and the next, we assume that p = 2. In particular,
the groups Un, Zn and Un introduced in Lecture 1 will be considered with respect
to the prime p = 2.

In view of Remark 1.8, we may suppose that char(F ) 6= 2, so that Theorem 1.9
can be restated as follows:

Theorem 2.3. Let F be a field of characteristic not 2, let a, b, c, d ∈ F× be such
that the mod 2 Massey product 〈a, b, c, d〉 is defined. Then 〈a, b, c, d〉 vanishes.

The starting point for the proof is the following proposition, which characterizes
the properties “〈a, b, c, d〉 vanishes” and “〈a, b, c, d〉 is defined” using the Brauer
group of Fa,d. Part (1) can essentially be found in [GMT18].

Proposition 2.4 (Guillot–Mináč–Topaz–Wittenberg). Let a, b, c, d ∈ F×.

(1) The Massey product 〈a, b, c, d〉 vanishes if and only if there exist α ∈ F×a
and δ ∈ F×d such that Na(α) = b and Nd(δ) = c in F×/F×2, and (α, δ) = 0
in Br(Fa,d)[2].

(2) The Massey product 〈a, b, c, d〉 is defined if and only if there exist α ∈ F×a
and δ ∈ F×d such that Na(α) = b and Nd(δ) = c in F×/F×2, and (α, δ)
belongs to the image of the restriction map Br(F )[2]→ Br(Fa,d)[2].

Given α ∈ F×a , δ ∈ F×d such that Na(α) = b, Nd(δ) = c in F×/F×2 and
(α, δ) ∈ Im(Br(F )[2] → Br(Fa,d)[2]), we will replace α by αx and δ by δy, for
suitable x, y ∈ F×, such that (αx, δy) = 0 in Br(Fa,d)[2]. We will accomplish this
in two steps, which as a first approximation may be summarized as:

(1) Reduce to the degenerate case a = d, by replacing α 7→ αx and δ ∈ F×d by
an appropriate ν ∈ F×a .

(2) Solve the degenerate case a = d, by replacing δ by δy, for some y ∈ F×.

Here are the precise versions of the two steps.

Proposition 2.5. Let a, c, d ∈ F×, let α ∈ F×a , let δ ∈ F×d such that Nd(δ) = c in
F× and (α, δ) is in the image of Br(F )[2] → Br(Fa,d)[2]. Suppose that c is not a
square in F×. Then there exist x ∈ F× and ν ∈ F×a such that (αx, δ) = (αx, ν) in
Br(Fa,d)[2] and (αx, ν) is in the image of the restriction map Br(F )[2]→ Br(Fa)[2].

Proposition 2.6. Let a ∈ F×, let π, µ ∈ F×a such that Na(π, µ) = 0 in Br(F )[2].
Then there exists y ∈ F× such that (π, µy) = 0 in Br(Fa).



12 ALEXANDER MERKURJEV AND FEDERICO SCAVIA

Proof of 2.4+2.5+2.6 ⇒ Theorem 1.9. It suffices to prove Theorem 2.3. The case
when c is a square in F is not difficult and is left to the reader. From now on, we
suppose that c is not a square in F . Since 〈a, b, c, d〉 is defined, Proposition 2.4(1)
gives α ∈ F×a , δ ∈ F×d such that Na(α) = b and Nd(δ) = c in F×/F×2 and
(α, δ) ∈ Im(Br(F )[2]→ Br(Fa,d)[2]). Proposition 2.5 shows that

(αx, δ) = (αx, ν) in Br(Fa,d)[2], Na(αx, ν) = 0 in Br(F )[2]

for some x ∈ F× and ν ∈ F×a . If we set π = αx and µ = ν, then Na(π, µ) = 0.
Proposition 2.6 then gives y ∈ F× such that

(αx, νy) = 0 in Br(Fa)[2].

Putting it all together, we get the following string of equalities in Br(Fa,d)[2]:

(αx, δy) = (αx, δ) + (αx, y) = (αx, ν) + (αx, y) = (αx, νy) = 0.

By Proposition 2.4(2), the Massey product 〈a, b, c, d〉 vanishes. �

In this lecture, we prove Propositions 2.4 and 2.6. In the next lecture, we will
prove Proposition 2.5, and hence complete the proof of Theorem 1.9.

Proof sketch of Proposition 2.4. We sketch the proof given in [MS23a, Proposition
2.1]. The proof is based on the following commutative diagram of groups with exact
rows and columns

(2.1)

Z/2Z Z/2Z

P U5 U3 × U3

P U5 U3 × U3.

Here P is the normal subgroup of U5 given by

P :=


1 0 0 ∗ ∗

1 0 ∗ ∗
1 0 0

1 0
1

 .
Define χ := (χa, χb, χc, χd) : ΓF → (Z/2Z)4. By Proposition 1.12, the Galois (U3 ×
U3)-algebras K/F such that KZ3×Z3 = Fa,b,c,d are all of the form (Fa,b)α⊗F (Fc,d)δ
for some α ∈ F×a and δ ∈ F×d such that Na(α) = b and Nd(δ) = c in F×/F×2. We
write (ρα, ρδ) : ΓF → U3 × U3 for the lift of χ corresponding to (Fa,b)α ⊗F (Fc,d)δ.

Let N and S be the subgroups of U3 as in the proof of Proposition 1.12(a). In
particular, N is an S-module (by conjugation). Let N ′ and S′ be the corresponding
subgroups of U3 as in the proof of Proposition 1.12(b). The bilinear map

N ×N ′ → P

taking a pair of matrices 1 0 f1

1 e1

1

 ,
1 e2 f2

1 0
1


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to 
1 0 0 f1e2 f1f2

1 0 e1e2 e1f2

1 0 0
1 0

1


yields an isomorphism of (U3 × U3)-modules

(2.2) N ⊗N ′ ∼−→ P.

Let ΓF act on P via (ρα, ρδ) and the conjugation U3 ×U3-action on P . Then (2.2)
yields is an isomorphism of ΓF -modules

IndFFa,d(Z/2Z)
∼−→ P.

In particular, H2(F, P ) = H2(Fa,d,Z/2Z) = Br(Fa,d)[2]. (Here it is crucial that
p = 2.) One checks that the obstruction to lifting (ρα, ρδ) to U5 is equal to the
Brauer class (α, δ) ∈ Br(Fa,d)[2]. �

Proof of Proposition 2.6. Let A be a biquaternion algebra, that is, A is the tensor
product of two quaternion algebras (a1, b1) and (a2, b2), where a1, b1, a2, b2 ∈ F×.
The Albert form of A is the quadratic form q := 〈a1, b1,−a1b1,−a2,−b2, a2b2〉.
(This is a quadratic form, not a Massey product!) The Albert form of A depends
on the presentation of A as (a1, b1) ⊗ (a2, b2), but its similarity class is uniquely
determined.

Let w(q) be the Witt index of q, that is, the dimension of a maximal totally
isotropic subspace of q. By a theorem of Albert [KMRT98, Theorem 16.5], A is
split if and only if q is hyperbolic. Let:

– s : Fa → F be a non-zero F -linear map such that s(1) = 0;
– Q be the quaternion algebra (π, µ);
– Q◦ ⊂ Q the subspace of pure quaternions;
– q : Q◦ → Fa be the quadratic form given by q(x) = x2. A computation

shows that q = 〈π, µ,−πµ〉;
– s∗(q) : Q◦ → Fa

s−→ F the Scharlau transfer of q.

By another theorem of Albert, s∗(q) is similar to an Albert form for Na(Q); see
the proof of [KMRT98, Corollary (16.28)]. By assumption, Na(Q) is split, and hence
s∗(q) is hyperbolic. Thus s∗〈µ,−πµ〉 is a 4-dimensional subform of a 6-dimensional
hyperbolic form. Since 4 > 6/2, this implies that s∗〈µ,−πµ〉 is isotropic:

There exist p, q ∈ F×a , and z ∈ F such that µp2 − πµq2 = z.

If z = 0, then π is a square and we may take y = 1. If z 6= 0 then, multiplying the
previous equation by µ gives (µp)2− π(µq)2 = µz, so that µz ∈ F×a is a norm from
((Fa)π)×. This is equivalent to (π, µz) = 0 in Br(Fa). Thus we may take y = z. �

Remark 2.7. The combination of Proposition 2.4 and Proposition 2.6 implies the
Massey Vanishing Conjecture for degenerate fourfold Massey products, that is,
Massey products of the form 〈a, b, c, a〉; see [MS22, Theorem 1.3].
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3. Lecture 3. End of proof of Theorem 1.9

3.1. Specialization in Galois cohomology. Recall from [Ros96, Remarks 1.11
and 2.5] that the Galois cohomology functor H∗(−,Z/2Z) from the category of
field extensions of F is a cycle module, that is, it satisfies the axioms of [Ros96,
Definitions 1.1 and 2.1].

For all integers n ≥ 1, all regular local F -algebras R of dimension n and
all regular systems of parameters π := (π1, . . . , πn) in R, letting K and K0 :=
R/(π1, . . . , πn) be the fraction field and residue field of R, respectively, we have a
graded ring homomorphism

sπ : H∗(K,Z/2Z)→ H∗(K0,Z/2Z),

called the specialization map, which is defined as follows.
Suppose first that n = 1, that is, R is a discrete valuation ring and π = (π1).

Then we set sπ := ∂π1
((−π1) ∪ (−)), where ∂π1

: H∗+1(K,Z/2Z)→ H∗(K0,Z/2Z)
is the residue map at π1; see [Ros96, Definition 1.1, below D4].

Suppose now that n ≥ 2 and that the specialization map has been defined for
all regular local F -algebras of dimension < n and all regular systems of parameters
on such algebras. For i = 2, . . . , n let πi ∈ R/(π1) be the reduction of πi modulo
π1 and set π := (π2, . . . , πn): it is a regular system of parameters in the regular
local ring R/(π1). Then sπ is defined by sπ := sπ ◦ s(π1), where π1 is viewed as an
element of the localization R(π1).

The ring homomorphism sπ depends on the choice of the ordered set π. Using
the isomorphism H2(F,Z/2Z) ' Br(F )[2] coming from Kummer theory, we obtain
a specialization map

sπ : Br(K)[2]→ Br(K0)[2].

Let X be an F -variety (that is, a separated integral F -scheme of finite type) and
P ∈ X be a regular F -point. For all regular systems of parameters π = (π1, . . . , πn)
in the regular local ring R = OX,P the previous discussion yields specialization maps

sP,π : H∗(F (X),Z/2Z)→ H∗(F,Z/2Z), sP,π : Br(F (X))[2]→ Br(F )[2].

If f ∈ O×X,P (that is, f is regular and nonzero at P ) then it follows from the

definition that sP,π(f) = (f(P )). In particular, if f ∈ F× is constant then sP,π(f) =
(f).

Lemma 3.1. Let n ≥ 1 be an integer, X be an n-dimensional F -variety, P ∈ X
be a regular F -point, and π := (π1, . . . , πn) be a regular system of parameters in
OX,P . Let F ′ be a finite separable field extension of F , let X ′ := X ×F F ′, let
P ′ be the only F ′-point of X ′ lying over P , and consider the system of parameters
π′ := (π1 ⊗ 1, . . . , πn ⊗ 1) in the regular local ring OX′,P ′ = OX,P ⊗F F ′. Then the
following squares commute:

H∗(F (X),Z/2Z) H∗(F,Z/2Z)

H∗(F ′(X ′),Z/2Z) H∗(F ′,Z/2Z)

(−)F ′(X′)

sP,π

(−)F ′

sP ′,π′

H∗(F ′(X ′),Z/2Z) H∗(F ′,Z/2Z)

H∗(F (X),Z/2Z) H∗(F,Z/2Z).

NF ′(X′)/F (X)

sP ′,π′

NF ′/F

sP,π

Lemma 3.1 admits an obvious generalization to the case when F ′ is an étale
F -algebra.

Proof. One proves the result by induction on n ≥ 1; see [MS23a, Lemma 2.9]. �
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3.2. A calculation. Let F be a field of characteristic different from 2, and let c,
x1, x2, y1, y2 and u be variables over F . Consider the polynomials

d = u2 − c,
w = x1y2 + x2y1,

h = x1y1 + ux1y2 + ux2y1 + cx2y2.

Note that these polynomials are symmetric with respect to the change of variables
xi ↔ yi.

Proposition 3.2. Let F be a field of characteristic different from 2, let c, x1, x2,
y1, y2 and u be variables over F , and let L := F (c, x1, x2, y1, y2, u). Then we have
the following equality in Br(L)[2]:(

(x2
1 − cx2

2)(y2
1 − cy2

2), 2wh
)

=
(
x2

1 − cx2
2, 2x2(x1 + ux2)

)
+
(
y2

1 − cy2
2 , 2y2(y1 + uy2)

)
+
(
d, (x1 + ux2)(y1 + uy2)h

)
.

Proof. We have

(3.1) x2h+ (x2
1 − cx2

2)y2 = w(x1 + ux2).

Indeed,

x2h+ (x2
1 − cx2

2)y2 = x2(x1y1 + ux1y2 + ux2y1 + cx2y2) + (x2
1 − cx2

2)y2

= (x1y2 + x2y1)(x1 + ux2)

= w(x1 + ux2).

Symmetrically, we get the equality

(3.2) y2h+ (y2
1 − cy2

2)x2 = w(y1 + uy2).

We deduce from (3.1) and (3.2) that

(3.3) (x2
1 − cx2

2)(y2
1 − cy2

2)x2y2 = (w(x1 + ux2)− x2h)(w(y1 + uy2)− y2h).

Note that

(3.4) h = (x1 + ux2)(y1 + uy2)− dx2y2.

Combining (3.1), (3.2) and (3.4), we get the equality

(3.5) (x2h+ (x2
1 − cx2

2)y2) · (y2h+ (y2
1 − cy2

2)x2) = w2(h+ dx2y2).

We have

(3.6) x2
1 − cx2

2 = (x1 + ux2)(x1 − ux2) + dx2
2,

and symmetrically

(3.7) y2
1 − cy2

2 = (y1 + uy2)(y1 − uy2) + dy2
2 .

We prove that the residues of both sides of the equality with respect to every
irreducible polynomial p ∈ F [c, x1, x2, y1, y2, u] are equal.

(1) The cases p = x1 +ux2 (resp. p = y1 +uy2) follow from (3.6) (resp. (3.7)).
(2) The cases p = x2

1− cx2
2 (resp. p = y2

1− cy2
2) follows from (3.1) (resp. (3.2)).

(3) The case p = h follows from (3.5).
(4) The case p = w follows from (3.3).
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(5) The case p = d follows from (3.4).
(6) The cases p = x2 (resp. p = y2) are obvious.
(7) The case when p is any other polynomial is obvious.

This shows that the two sides differ by a constant Brauer class, that is, a class in
the image of the map Br(F ) → Br(L). Since the equality holds after specializing
at c = 0, the proof is complete. �

Lemma 3.3 (Trace Lemma). Let ρ ∈ F×a and µ ∈ F×b be such that Na(ρ) = Nb(µ).
Set g := Tra(ρ) + Trb(µ), and suppose that d 6= 0. Then (µ, a) = (g, a) in Br(Fb).

Proof. We have

Na(ρ+ µ) = (ρ+ µ)(σa(ρ) + µ)

= ρσa(ρ) + ρµ+ µσa(ρ) + µ2

= µσb(µ) + ρµ+ µσa(ρ) + µ2

= µ(Tra(ρ) + Trb(µ))

= µg.

It follows that (µg, a) = (Na(ρ + µ), a) = 0 in Br(Fb), that is, (µ, a) = (g, a) in
Br(Fb). �

3.3. Proof of Proposition 2.5.

Proof of Proposition 2.5. Because (α, c) = 0, there exist α1, α2 ∈ F×a such that

α = α2
1 − cα2

2.

Claim 3.4. We may suppose α1, α2 linearly independent over F .

Proof of Claim 3.4. Suppose that α1 and α2 are linearly dependent over F , so
that there exists t ∈ F such that either α1 = tα2 or α2 = tα1. In the first
case α = (t2 − c)α2

2, and in the second case α = (1 − ct2)α2
1. Thus, there exist

i ∈ {1, 2} and u ∈ F× such that α = uα2
i . Note that u ∈ F× and αi ∈ F×a because

α ∈ F×a . Letting x = u and ν = 1, we have (αx, δ) = (u2, δ) = 0 in Br(Fa,d) and
(αx, ν) = (ux, ν) = 0 in Br(Fa), which proves Proposition 2.5 in this case. �

From now on, we assume that α1 and α2 are linearly independent over F . Let
K := F (A2) = F (x1, x2), and define

f := x2
1 − cx2

2 ∈ K×.

Let

h1 := α1x1 + cα2x2 ∈ K×a , h2 := α1x2 + α2x1 ∈ K×a .
Let u1, u2 ∈ F be such that

δ = u1 + u2

√
d,

so that Nd(δ) = u2
1 − du2

2 = c. We define the following elements of F×a :

β1 := α1 + u1α2, β2 := u1α1 + cα2, θ := 2α2β1.

Finally, we define

g := 2hh2 ∈ K×a , t := x1 + u1x2 ∈ K×, s := 2x2t = 2(x1x2 + u1x
2
2) ∈ K×.

Lemma 3.5. We have (α, θ) = (α, δ) and (αf, g) = (αf, δ) in Br(Ka,d)[2].
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Proof. Set ρ := (α1 +
√
α)α2

−1. We have Nα(ρ) = c = Nd(δ). The equality

Trα(ρ) + Trd(δ) = 2(α1α
−1
2 + u1) = 2α−1

2 β1,

and Lemma 3.3 imply that (α, θ) = (α, 2α2β1) = (α, δ) over Fa,d. The proof that
(αf, g) = (αf, δ) over Ka,d is similar. �

Specialization of the equality of Proposition 3.2 at y1 = α1, y2 = α2 and u = u1

yields

(fα, 2h2h) = (f, 2x2t) + (α, 2α2β1) + (d, tβ1h) in Br(Ka)[2],

or equivalently

(3.8) (αf, g) + (f, s) + (d, β1ht) + (α, θ) = 0 in Br(Ka)[2].

So far, we have not yet used the fact that (α, δ) comes from Br(F )[2]. Let
A ∈ Br(F )[2] be such that (α, δ) = AFa,d over Fa,d. Then (α, θ) − AFa in Br(Fa)
vanishes over Fa,d, and hence (α, θ) − AFa = (d, ε) for some ε ∈ F×a . Applying
NKa/K to (3.8), we get

NKa/K(αf, g) = (d,NKa/K(hη)),

where η := εβ1 ∈ F×a . Let P = (P1, P2) ∈ A2
F (F ) be an F -point such that h is

regular and invertible at P , let π := (x1 − P1, x2 − P2) be a system of parameters
at P , and define the specializations x := sπ(f) ∈ F× and ν := sπ(g). We specialize
the above equation at P via π to obtain

NFa/F (αx, ν) = (d,NFa/F (h(P )η)).

We wish to find P so that the right-hand side is zero. This would be case if we
could choose P such that h is regular at P and h(P ) = η. We have

h(P ) = η ⇐⇒ u1(α1P2 + α2P1) + (α1P1 + cα2P2) = η

⇐⇒ (α1 + u1α2)P1 + (u1α1 + cα2)P2 = η.

Recall that α1 and α2 were chosen to be linearly independent over F . Thus it
suffices to check that

det

[
1 u1

u1 c

]
= c− u2

1

is not zero. This is true because c is not square in F . Thus we may find P such
that h(P ) = η: in fact, we showed that P exists and is unique. �

Propositions 2.4, 2.5 and 2.6 have thus been proved, and hence the proof of
Theorem 1.9 is complete.

4. Lecture 4. Formal Hilbert 90 and non-formality of Galois
cohomology

4.1. Formal Hilbert 90. In this final lecture, we wish to examine the following
vague question.

Question 4.1. Is the Massey Vanishing Conjecture a consequence of Hilbert’s The-
orem 90 alone?
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Here is one way to make this question precise. Let p be a prime number, let Zp
be the ring of p-adic integers, and let Γ be a profinite group, and let θ : Γ → Z×p
be a continuous group homomorphism. We call θ a p-orientation of Γ and the pair
(Γ, θ) a p-oriented profinite group.

We write Zp(1) for the topological Γ-module with underlying topological group
Zp on which Γ acts via θ, that is, g · v := θ(g)v for every g ∈ Γ and every v ∈ Zp.
For all n ≥ 0, we set Z/pnZ(1) := Zp(1)/pnZp(1).

Let (Γ, θ) be a p-oriented profinite group. We say that (Γ, θ) satisfies formal
Hilbert 90 if for every open subgroup H ⊂ Γ and all n ≥ 1 the reduction map
H1(H,Z/pnZ(1))→ H1(H,Z/pZ(1)) is surjective.

Example 4.2. Let F be a field and write ΓF for the absolute Galois group of F .
We define the canonical p-orientation θF on ΓF as follows. If char(F ) 6= p, we
define θF as the continuous homomorphism θF : ΓF → Z×p given by g(ζ) = ζθF (g)

for every root of unity ζ of p-power order in Fs. If char(F ) = p, we let θF be the
trivial homomorphism. The pair (ΓF , θF ) is a p-oriented profinite group and, by
Hilbert’s Theorem 90, it satisfies formal Hilbert 90.

We may now formulate Question 4.1 in a more precise way.

Question 4.3. Let p be a prime number, let (Γ, θ) be a p-oriented profinite group
which satisfies formal Hilbert 90, let n ≥ 3, and let χ1, . . . , χn ∈ H1(Γ,Z/pZ). If
〈χ1, . . . , χn〉 is defined, does it vanish?

In [MS25], we proved that Question 4.3 has affirmative answer when n = 3, as
well as when (n, p) = (4, 2) and χ1 = χ4 (the degenerate case).

Theorem 4.4 (Merkurjev–Scavia). Let p be a prime number, let (Γ, θ) be a p-
oriented profinite group satisfying formal Hilbert 90 and let χ1, χ2, χ3 ∈ H1(Γ,Z/pZ).
The following are equivalent:

(1) χ1 ∪ χ2 = χ2 ∪ χ3 = 0 in H2(Γ,Z/pZ);
(2) the mod p Massey product 〈χ1, χ2, χ3〉 is defined;
(3) the mod p Massey product 〈χ1, χ2, χ3〉 vanishes.

Theorem 4.5 (Merkurjev–Scavia). Let (Γ, θ) be a 2-oriented profinite group sat-
isfying formal Hilbert 90 and let χ1, χ2, χ3 ∈ H1(Γ,Z/2Z). If the mod 2 Massey
product 〈χ1, χ2, χ3, χ1〉 is defined, then it vanishes.

Remark 4.6. In particular, Theorem 4.5 gives an alternative proof of Theorem 1.9,
in the degenerate case χ1 = χ4, which does not rely on the theory of Albert forms
but only uses Hilbert’s Theorem 90.

Beyond the degenerate case χ1 = χ4, we do not know whether Theorem 1.9
can be extended to 2-oriented profinite groups satisfying formal Hilbert 90. This is
because we do not know how to generalize Proposition 2.5 to this setting.

Let Z(p) ⊂ Q be the localization of Z at the prime ideal (p). The group Z×p acts
on the abelian group Q/Z(p) by multiplication. We let S be the Γ-module whose
underlying abelian group is Q/Z(p) and on which Γ acts via θ. For all n ≥ 1, we have
an isomorphism of Γ-modules Z/pnZ(1)→ S[pn] given by a+ pnZ 7→ a/pn + Z(p).
Therefore, S is the colimit of the Z/pnZ(1) for n ≥ 1.

The key tool for the proof of Theorems 4.4 and 4.5 is contained in the following
definition.



LECTURES ON THE MASSEY VANISHING CONJECTURE 19

Definition 4.7. Let (Γ, θ) be a p-oriented profinite group. A Hilbert 90 module for
(Γ, θ) is a discrete Γ-module M such that

(i) pM = M ,
(ii) the p-primary torsion subgroup of M is isomorphic to S as a Γ-module, and

(iii) H1(H,M) = 0 for every open subgroup H ⊂ Γ.

Example 4.8. Let p be a prime number, let F be a field of characteristic different
from p, let ΓF be the absolute Galois group of F , and let θ be the canonical
orientation on ΓF ; see Example 4.2. It follows from Hilbert’s Theorem 90 that F×s
is a Hilbert 90 module for (ΓF , θF ).

It turns out that every p-oriented profinite group satisfying formal Hilbert 90
admits a Hilbert 90 module.

Theorem 4.9 (Merkurjev–Scavia). Let (Γ, θ) be a p-oriented profinite group. Then
(Γ, θ) satisfies formal Hilbert 90 if and only if it admits a Hilbert 90 module.

The most difficult part of the proof of Theorem 4.9 is to construct a Hilbert 90
module for a pair (Γ, θ) which satisfies formal Hilbert 90. When (Γ, θ) = (ΓF , θF ),
it is not clear how the Hilbert 90 module constructed in Theorem 4.9 is related to
the one of Example 4.8.

With Theorem 4.9 at our disposal, we may try to adapt the proofs of the Massey
Vanishing Conjecture in the n = 3 case or in the degenerate (n, p) = (4, 2) case.
In the first case, one must replace the arguments involving central simple algebras
split by a (Z/pZ)2-extension by cocycle arguments. In the second case, the key
point is to prove Proposition 2.6 without quadratic form theory. The point is that
Proposition 2.6 may also be proved from suitable exact sequences of F -tori, and
such a proof may be mimicked in this more general setting. Indeed, if T is an
F -torus with cocharacter lattice T∗, then T (Fs) = T∗⊗F×s may be expressed using
only the ΓF -lattice T∗ and the Hilbert 90 module F×s .

4.2. Non-formality of Galois cohomology: Positselski’s question. Let (A, ∂)
be a differential graded ring, i.e, A = ⊕i≥0A

i is a non-negatively graded abelian
group with an associative multiplication which respects the grading, and ∂ : A→ A
is a degree 1 homomorphism of graded groups such that ∂ ◦ ∂ = 0 and

∂(ab) = ∂(a)b+ (−1)ia∂(b) for all i ≥ 0, a ∈ Ai and b ∈ A.

We say that A is formal if it is quasi-isomorphic as a differential graded ring to
H∗(A) with the zero differential, that is, if there exist a differential graded ring B
and a diagram

A B H∗(A),

where both maps are quasi-isomorphisms. Loosing speaking, A is formal if no
essential information about A is lost when passing to H∗(A).

Hopkins–Wickelgren [HW15] asked whether C·(ΓF ,Z/pZ) is formal for every
field F and every prime p. The authors of [HW15] were unaware of earlier work of
Positselski, who had already showed in [Pos10, Section 9.11] that C·(ΓF ,Z/pZ) is
not formal for some finite extensions F of Q` and F`((z)), where ` 6= p. Positselski
later wrote a detailed exposition of his counterexamples in [Pos17].

For Positselski’s method to work, it seemed important that F did not contain
all the roots of unity of p-power order. This motivated the following question; see
[Pos17, p. 226].
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Question 4.10 (Positselski). Does there exist a field F containing all roots of unity
of p-power order such that C·(ΓF ,Z/pZ) is not formal?

Using Massey products, we were able to show in [MS23b] that Question 4.10 has
negative answer in general.

Theorem 4.11 (Merkurjev–Scavia). Let p be a prime number and let F be a field
of characteristic different from p. There exists a field L containing F such that the
differential graded ring C·(ΓL,Z/pZ) is not formal.

We devote the remainder of this lecture to the proof of Theorem 4.11.

4.3. Massey products and formality. In order to explain the relation between
Question 4.10 and Massey products, it is necessary to discuss Massey products
for an arbitrary differential graded ring A, beyond the case of mod p continuous
cochains modulo p that has been considered so far in these notes. Let n ≥ 2
be an integer, and let a1, . . . , an ∈ H1(A). By definition, a defining system for
the Massey product 〈a1, . . . , an〉 is a collection M of elements of aij ∈ A1, where
1 ≤ i < j ≤ n+ 1, (i, j) 6= (1, n+ 1), such that

(1) ∂(ai,i+1) = 0 and ai,i+1 represents ai in H1(A), and

(2) ∂(aij) = −
∑j−1
l=i+1 ailalj for all i < j − 1.

It follows from (2) that −
∑n
l=2 a1lal,n+1 is a 2-cocycle: we write 〈a1, . . . , an〉M

for its cohomology class in H2(A), called the value of 〈a1, . . . , an〉 corresponding to
M .

Definition 4.12. The Massey product of a1, . . . , an is the subset 〈a1, . . . , an〉 of
H2(A) consisting of the values 〈a1, . . . , an〉M of all defining systems M . We say that
the Massey product 〈a1, . . . , an〉 is defined if it is non-empty, and that it vanishes
if 0 ∈ 〈a1, . . . , an〉.

By a theorem of Dwyer [Dwy75], this definition reduces to Definition 1.1 when
A is the cochain DGA of a profinite group.

Lemma 4.13. Let (A, ∂) be a differential graded ring, let n ≥ 3 be an integer, and
let a1, . . . , an be elements of H1(A) satisfying ai ∪ ai+1 = 0 for all 1 ≤ i ≤ n − 1.
If A is formal, then 〈a1, . . . , an〉 vanishes.

Proof. See [PQ25, Theorem 3.8]. It is not difficult to give a direct proof in the case
n = 4, which is the only case that we will need. �

Recall that the Massey Vanishing Conjecture asks whether the first implication
of Proposition 1.3 can be reversed for absolute Galois groups. Lemma 4.13 tells us
that, for a formal DGA A, both implications of Proposition 1.3 can be reversed. It
is natural to wonder whether both implications can be reversed for absolute Galois
groups; see [MT17b, Question 4.2] and [PS18, Definition 1.3]. This leads us to the
following question of Mináč and Tân.

Question 4.14 (Strong Massey Vanishing (Mináč–Tân)). Let F be a field, let
n ≥ 3 be an integer, let p be a prime number, and let χ1, . . . , χn ∈ H1(F,Z/pZ) be
such that χi ∪ χi+1 = 0 for all i = 1, . . . , n. Does 〈χ1, . . . , χn〉 vanish?

It is clear that if Strong Massey Vanishing is true for F , then the Massey Van-
ishing Conjecture holds for F . Moreover, by Lemma 4.13, if the Strong Massey
Vanishing Conjecture fails, for some n ≥ 3 and some prime p, then C·(ΓF ,Z/pZ)
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is not formal. Therefore, in order to prove Theorem 4.11, it suffices to exhibit a
field L for which Strong Massey Vanishing fails.

Before our work, the only known example of a field for which Strong Massey
Vanishing fails was F = Q, as shown by Harpaz and Wittenberg [GMT18, Example
A.15].

Example 4.15 (Harpaz–Wittenberg). Strong Massey Vanishing fails for F = Q,
n = 4, and p = 2. More precisely, if we let b = 2, c = 17 and a = d = bc = 34, then
(a, b) = (b, c) = (c, d) = 0 in Br(Q) but 〈a, b, c, d〉 is not defined over Q.

As a first attempt towards the proof of Theorem 4.11, it is natural to try to
generalize the Harpaz–Wittenberg example to arbitrary fields. This is our [MS22,
Theorem 1.4].

Theorem 4.16 (Merkurjev–Scavia). Let p = 2, let F be a field of characteristic
different from 2, and let b, c ∈ F×. The following are equivalent:

(1) the Massey product 〈bc, b, c, bc〉 is defined,
(2) the Massey product 〈bc, b, c, bc〉 vanishes,
(3) (b, c) = 0 in Br(F ) and −1 ∈ Nb,c(F×b,c).

Theorem 4.16 does not imply Theorem 4.11, that is, it does not suffice to give
a negative answer to Question 4.10. Indeed, if F contains a primitive 8-th root of
unity ζ8, then −1 = Nb,c(ζ8) ∈ Nb,c(F×b,c), and hence if (b, c) = 0 then 〈bc, b, c, bc〉
vanishes by Theorem 4.16.

Theorem 4.11 is a consequence of the next more precise result, which we proved
in [MS23b, Theorem 1.3].

Theorem 4.17 (Merkurjev–Scavia). Let p be a prime number, let F be a field of
characteristic different from p. There exist a field L containing F and χ1, χ2, χ3, χ4 ∈
H1(L,Z/pZ) such that χ1 ∪ χ2 = χ2 ∪ χ3 = χ3 ∪ χ4 = 0 in H2(L,Z/pZ) but
〈χ1, χ2, χ3, χ4〉 is not defined. Thus the Strong Massey Vanishing property relative
to n = 4 and the prime p fails for L, and C·(ΓL,Z/pZ) is not formal.

We construct L and the χi. Replacing F by a finite extension if necessary, we
may suppose that F contains a primitive p-th root of unity ζ. Let E := F (x, y),
where x and y are independent variables over F , let X be the Severi-Brauer variety
of the degree-p cyclic algebra (x, y) over E, and let L := E(X). Consider the
following elements of E×:

a := 1− x, b := x, c := y, d := 1− y.

We have (a, b) = (c, d) = 0 in Br(E) by the Steinberg relations [Ser79, Chapter
XIV, Proposition 4(iv)], and hence (a, b) = (b, c) = 0 in Br(L). Moreover, (b, c) 6= 0
in Br(E) because the residue of (b, c) along x = 0 is non-zero, while (b, c) = 0 in
Br(L) by [GS17, Theorem 5.4.1]. Thus (a, b) = (b, c) = (c, d) = 0 in Br(L). In
order to prove Theorem 4.17, it suffices to prove that 〈a, b, c, d〉 is not defined. We
summarize the main steps of the proof.

The first step is to find an equivalent condition for the property “〈a, b, c, d〉 is
defined” in the spirit of Proposition 2.4.

Proposition 4.18. Let p be a prime, let F be a field of characteristic different from
p and containing a primitive p-th root of unity ζ, and let a, b, c, d ∈ F×. The mod
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p Massey product 〈a, b, c, d〉 is defined if and only if there exist u ∈ F×a,c, v ∈ F×b,d
and w0 ∈ F×b,c such that

Na(u) ·Nd(v) = wp0 , (σb − 1)(σc − 1)w0 = ζ.

Proof sketch. We refer to [MS23b, Proposition 3.7] for the complete proof of Propo-
sition 4.18. The idea is the following. The Massey product 〈a, b, c, d〉 is defined if
and only if there exists a Galois U5-algebra L/F with induced (Z/pZ)4-algebra
Fa,b,c,d/F . Contemplating the following picture of U5

(4.1)


1 ∗ ∗ ∗ �
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1


we see that this is equivalent to the existence of a U4-algebra inducing Fa,b,c/F
(top-left 4× 4 square), a U4-algebra inducing Fb,c,d/F (bottom-right 4× 4 square),
and an isomorphism of the induced U3-algebras (central 3×3 square). The strategy
is to parametrize all possibilities for the U4-algebras, and to impose the condition
that they agree on the common U3 square. Loosely speaking, u corresponds to
the upper U4-square, v to the bottom U4-square, and w0 to the fact that the two
U4-squares agree on the common U3-square. �

Once Proposition 4.18 is established, elementary calculations yield the following.

Corollary 4.19. Let p be a prime, let F be a field of characteristic different from p
and containing a primitive p-th root of unity ζ, let a, b, c, d ∈ F×, and suppose that
〈a, b, c, d〉 is defined over F . For every w ∈ F×b,c such that (σb − 1)(σc − 1)w = ζ,

there exist u ∈ F×a,c and v ∈ F×b,d such that Na(u)Nd(v) = wp.

Proof. See [MS23b, Corollary 4.5]. �

We can rephrase Corollary 4.19 as follows. Let T be the kernel of the homomor-
phism of F -tori

Ra,c(Gm)×Rb,d(Gm)→ Rb,c(Gm), (u, v) 7→ Na(u)Nd(v) = 1.

Here Ra,c(Gm) (resp. Rb,d(Gm)) denotes the Weil restriction of Gm from Fa,c
(resp. Fb,d) to F : it is a quasi-trivial F -torus of rank 4. One shows that T is an
F -torus, that is, it is connected; see [MS23b, Lemma 4.3]. Given w ∈ F×b,c such

that (σb − 1)(σc − 1)w = ζ, the Massey product 〈a, b, c, d〉 is defined if and only if
the T -torsor Ew ⊂ Ra,c(Gm)×Rb,d(Gm) given by Na(u)Nd(v) = wp is split.

More generally, suppose that T is a torus over a field F , let K be a Galois field
extension of F such that TK is split, and let G = Gal(K/F ). We have an exact
sequence of G-modules

(4.2) 1→ T (K)→ T (K(X))
div−−→ Div(XK)⊗ T∗

deg−−→ T∗ → 0,

where T∗ denotes the cocharacter lattice of T . We consider the subgroup of unram-
ified torsors

H1(G,T (K(X)))nr := Ker[H1(G,T (K(X)))
div−−→ H1(G,Div(XK ⊗ T∗))],
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and the homomorphism

θ : H1(G,T (K(X)))nr → Coker[(Div(XK)⊗ T∗)G
deg−−→ (T∗)

G],

induced by (4.2). It turns out that it is possible to compute θ explicitly in terms
of any short exact sequence

1→ T → P → S → 1

where P is a quasi-trivial torus; see [MS23b, Appendix B] for details.
In our setup F = E, T = T , K = Ea,b,c,d, and P = Ra,c(Gm) × Rb,d(Gm). By

lattice computations, we show in [MS23b, §5] that the TL-torsor Ew is unramified
and that θ([Ew]) 6= 0: more precisely, in our example the codomain of θ is Z/pZ
and θ([Ew]) is a generator. Therefore Ew is non-trivial, and hence 〈a, b, c, d〉 is not
defined, completing the proof of Theorem 4.11.
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